Anodizing is an electrochemical process where a thicker oxide layer is grown on the material. This is useful for improving an objects corrosion and wear resistance, manufacture nanoporous templates or give the material a decorative appearance. Not all materials can be anodized however as their oxides are not dense and hard but the technique has been widely used on aluminum, titanium, zinc, magnesium and their alloys.
The anodizing system consists of a power source, anodizing bath, electrolyte and anodizable material. The bath is usually made from a chemically resistant conductive material such as stainless steel and serves as a cathode. The anodizable material serves as an anode and is placed inside the anodizing bath with the electrolyte. Both the anode and the cathode need to be connected to the power source. The grown oxide layers properties depend on the material, used electrolyte, temperature and electrical parameters used for anodizing.
In order to produce a uniform oxide layer, the substrates are also treated before the process. The main problem is usually organic contamination of the surface, which prevents growth of the oxide layer. This is removed with organic solvents such as acetone. Often the thin native oxide layer is also removed via etching before the anodizing.