Tag Archives: animation

Atomic Layer Deposition – A Method for Making Ultra-Thin Invisible Corrosion Resistant Coatings

Ever thought how nice it would be if the replicator (synthesizer) from Star Trek actually existed? Assembling different materials in an atomic scale however, has been possible already for decades! This exciting technique is called „Atomic Layer Deposition“ (ALD). The deposition process is carried out in a specially designed ALD reactor, where different chemicals enter the reaction chamber one at a time and react with the substrates surface in a self limiting manner. With each deposition cycle a thin layer is deposited and by repeating the cycle thicker material layers can be obtained. An easy example would be the deposition of titanium dioxide by using titanium(IV) chloride and water as reacting chemicals (precursors) and nitrogen as carrier gas.

Although this method is not suitable for creating macroscopic objects, it can be used to significantly enhance their properties such as corrosion resistance, wetting (self cleaning surfaces) or even biocompatibility (brain chips). This method is also used in the production of some solar cells, microelectronic devices and nanostructures. The huge benefit of this method is the possibility to apply films with well defined thickness and composition even on sophisticated three-dimensional objects. This makes ALDep perfect for applying ultra thin (nanometric) corrosion resistant coatings on many small devices (including jewelery), where thick coatings cannot be used.

In order to get a better understanding of this method, watch the video above.

Sony Vegas Pro 13 Suite was used for making this video – check out their website below:
Sony Creative Software Inc.

Atomic Force Microscopy (AFM)

Atomic force microscope (AFM) is a powerful tool that is used to study materials by scanning over the surface with a very sharp tip. When a sharp tip approaches a surface then first Van der Waals attractive forces apply that pull the tip closer to the surface and therefore also bend the cantilever. When the tip is close enough then electrostatic repulsive forces apply. The bending of the cantilever is monitored with a lazer beam that is focused on the cantilever and reflected into the detector.This method allows to obtain greatly magnified high resolution 3D images of the studied substrates (even atomic resolution is possible). The main working modes are contact, non-contact and tapping mode. In then case of contact mode the tip is in direct contact with the material. This is suitable for studying hard surfaces. In the case of non-contact mode the tip is vibrating close to the surface. This mode is used for studying sticky and soft surfaces. In the tapping mode the tip vibrates with a greater amplitude and briefly touches the sample at its lowest point of the trajectory. This method is useful for obtaining a “real” image of the studied surface as the tip penetrates the thin film of water that is always present on substrates when measuring in open air. There are also other types of scanning probe microscopes where different information can be obtained from the sample. For example a if one uses a thermocouple as a sharp tip for scanning then it is possible to study heat distribution on microscopic electronic devices in order to detect possible spots where oveheating occurs. In the case of scanning tunnel microscopy an electric potential is applied between the tip and the sample, which causes the movement of electrons from one to other. By measuring the tunneling current, it is possible to obtain valuable information about the state of the surface. Even atomic resolution is possible in STM and therefore can be used to study novel materials such as graphene. It is also possible to use magnetic needles or thin optical cables as tip for scanning over the studied surface.