Materials Characterization

Do you require more information about a certain material used in your products but don`t have the necessary equipment or knowledge?

In collaboration with the University of Tartu we can study your material with state of the art techniques in unprecedented detail and provide you with the needed information.

Contact us if you are interested in materials characterization services!

Here is a list of some common techniques used in our daily research and their possible applications:

Scanning electron microscopy (SEM) – Used to obtain high resolution images of a materials surface with a magnification far greater than in the case of optical microscopes. SEM can also be used to study the distribution of different elements in a microscopic scale or even locally (few microns area) measure the elemental composition of a material. SEM is also a valuable tool to visualize microscopic cracks and defects in a material that affect its mechanical properties. Another useful application of SEM is to study the individual grain size of powders and also evaluate the size distribution. Learn more by watching our educational video and visiting our gallery.

X-ray fluorescence spectroscopy (XRF) – Quick and easy way to precisely study the average elemental composition of various materials such as a metal alloys, ceramics and polymers. For instance, we can use XRF to verify if your supplier provides you with the metal alloy that you requested and also see if it contains any unwanted impurities. Learn more by watching our educational video.

Atomic force microscopy (AFM) – Allows to measure the roughness and surface details of extremely smooth surfaces such as glass or various fine polished materials. For example, the nano scaled roughness plays a significant role in the performance of self-cleaning windows. Learn more by watching our educational video.

X-ray diffraction (XRD) – Gives information about the crystal structure of bulk materials, powders and thin films. For instance, XRD allows to verify if a titanium dioxide powder is amorphous, anatase, rutile or a mixture. It can also give information about the effect of different thermal treatments on a metal.