All posts by Captain Corrosion

How Do Charged Particles Cause Corrosion in Space?

How and why do charged particles cause corrosion of materials in space? This is a question asked by many spacecraft engineers and the answer is not so simple. Namely, there is a whole zoo of different particles and every single one of them interacts with the matter in a unique way. The general rule however is that particles which have a higher mass, charge and velocity, cause more damage. For instance, electrons have a negative charge and in a scanning electron microscope they travel at about 20% of the speed of light but they hardly damage the studied substrate. Ions however have not only a charge but also a lot of mass and therefore they can also cause serious damage if their velocity is sufficient. A completely different story is with antimatter particles such as positrons and anti-protons. When these hit regular matter, then both the particle and the surface of regular matter is converted into energy in the form of gamma radiation. This radiation however can ionize the nearby matter and also do serious damage to electronics, which is shielded from particles but not from gamma rays. High energy radiation is also created when regular charged particles such as protons and electrons interact with the matter as the excess energy is released as braking light (bremsstrahlung), when the high velocity of the particle suddenly changes to zero upon hitting the surface of a material. Anyhow, the spacecrafts are constantly being bombarded with different particles and this slowly degrades the surface of the material and the resulting radiation also has a devastating effect on the electronics. Learn more by watching our new science video:

How Does Atomic Oxygen Cause Corrosion in Space?

Atomic oxygen is one of the leading candidates which causes the degradation of materials in space. That’s because atomic oxygen is highly reactive and will oxidize anything that can be oxidized. This means that most vulnerable to this type of corrosion are polymers, carbon fiber materials and unprotected electronics. So in order to extend the lifespan of a spacecraft, one first needs to counter the corrosion caused by atomic oxygen. This can be done by using proper materials for making the spacecrafts components and by avoiding the exposure of sensitive electronics to space.

Science Video Series About Corrosion in Space

Captain Corrosion OÜ proudly presents a three part video series about corrosion in space. These science videos were made in collaboration with the department of materials science, University Tartu and were partially funded by the “Center of Excellence” (Project TK141). Corrosion in space is actually quite relevant right now as there are more spacecrafts in the orbit than ever before and their number keeps increasing. An average spy satellite, disguised as a weather satellite, costs about 400 million euros and their lifespan is somewhat limited due to various reasons like human errors, software/hardware failure and degradation of specific spacecraft parts due to the hostile environment of space (corrosion!). This “corrosion” of materials in space however can be quite complicated as there are multiple factors that contribute to the process. In our video series we discuss some of the most important factors. The general idea of this series is to provide additional information for companies that make spacecraft component so they can better plan their devices to last as long as possible in space.

Part 1 – How Does Atomic Oxygen Cause Corrosion in Space?

Part 2 – How do Charged Particles Cause Corrosion in Space?

Part 3 – How does Radiation Cause Corrosion in Space?

New Salt Spray Test Chamber

The corrosion scientists of the University of Tartu have a new expensive toy – a salt spray test chamber that allows to study the performance of materials and protective coatings similar to real conditions.


Arrival of the salt spray test chamber – on the image Maido Merisalu (founder of Captain Corrosion OÜ).

X-Ray Fluorescence Spectroscopy (XRF)

X-ray fluorescence spectroscopy (XRF) is one of the most common techniques used for studying the elemental composition of different materials. In this materials characterization method the sample is irradiated with x-ray radiation, which knocks out electrons from atoms, leaving them in an excited state. During the relaxation of these atoms the excess energy is released in the form of x-ray radiation. The energy and intensity of this radiation however depends directly on the composition of the material. Therefore it is possible to study a materials composition by detecting the x-rays that come out of the sample. Watch our video to learn more!

Animation of Pulsed Laser Deposition for the Group of Sensor Technologies

This video was made by Captain Corrosion OÜ for the Group of Sensor Technologies (Institute of Physics, University of Tartu) to show the working principle of pulsed laser deposition (PLD), where a pulsing laser beam extracts matter from the target. This extracted matter is then deposited to the substrate. By tuning the level of vacuum in the deposition chamber and the intensity of the laser it is possible to use PLD technology to introduce different modifications into graphene. The Group of Sensor Technologies uses this method to create novel graphene-based gas sensors that can be used for instance for measuring the level of pollution in air.

Read more:

Scanning Electron Microscopy (SEM) Studies for Biometric OÜ


The company asked us to do elemental analysis for multiple dental implant components in order to confirm the quality of the metals. Due to the difficult three-dimensional shape of the substrates, the studies were carried out using a high resolution scanning electron microscope “Helios NanoLab 600” (FEI), equipped with an energy-dispersive X-ray spectrometry (EDX) analyzer INCA Energy 350 (Oxford Instruments). The samples were attached to the mushroom-shaped holders with a carbon tape. The studies showed that the metals used by Biometric OÜ are indeed high quality medical titanium. We also made high resolution images of the implants surface, which has been developed to be biocompatible, support osseointegration and have a good adhesion with the surrounding tissue.


Studied dental implant components (on the left) and the surface of an advanced dental implant (on the right).

X-Ray Fluorescence Spectroscopy (XRF)

We have started making a new science video about X-Ray fluorescence spectroscopy (XRF). In this 6 minute video we will explain with 3D animations the basics of this materials characterization technique and do a demonstrations where we use XRF to measure the elemental composition of an ancient coin.

This video will be published in October 2016.

Potential sponsors can learn more about collaboration opportunities by contacting us.