Tag Archives: space

Project EU51950

Description:

Assembly and programming of an electronic measurement device that allows to perform materials characterization in space on student satellite ESTCube-2. (EST: Mõõteseadme valmistamine ja programmeerimine materjaliuuringute jaoks kosmoses tudengisatelliidil ESTCube-2). This electronic device is one of the two major components in our developed corrosion testing module, which will be used to test a novel nanostructured coating and a smart radiation shielding material in LEO (Low Earth Orbit).

 

Funding

The preparation, programming and preliminary testing of the electronic measurement device is carried out by Hedgehog OÜ and funded by Captain Corrosion OÜ (30%) and Enterprise Estonia (70%).

 

Partners

ESTCube group assists us with the planning of this experiment and with the integration of our corrosion testing module to the student satellite ESTCube-2. Once the satellite is in space, we will also carry out the tests together.

Laboratory of Thin Film Technology (University of Tartu) is our main partner for assembling the test system, that will be used to test the patented nanostructured coating. With them we also carry out laboratory-based materials characterization measurements and tests.

 

 

How Does Radiation Cause Corrosion in Space?

How Does Radiation Cause Corrosion in Space? This is actually quite complicated as the radiation in space covers a wide spectral range and the interaction between matter and radiation depends on the wavelength (energy) of the radiation. Anyhow, radiation can be divided into two groups – ionizing and non-ionizing radiation. Non-ionizing radiation such as infrared or visible light can only damage the material if the intensity is high (e.g. laser beam). Ionizing radiation like UV-light, X-rays and gamma rays on the other hand has already enough energy to remove electrons from atoms and this degrades materials over time. In the case of high energy gamma radiation there are also other interactions possible such as the creation of electron-positron couples, compton scattering, photodisintegration and photofission. Learn more about corrosion in space by watching our new science video:

How Do Charged Particles Cause Corrosion in Space?

How and why do charged particles cause corrosion of materials in space? This is a question asked by many spacecraft engineers and the answer is not so simple. Namely, there is a whole zoo of different particles and every single one of them interacts with the matter in a unique way. The general rule however is that particles which have a higher mass, charge and velocity, cause more damage. For instance, electrons have a negative charge and in a scanning electron microscope they travel at about 20% of the speed of light but they hardly damage the studied substrate. Ions however have not only a charge but also a lot of mass and therefore they can also cause serious damage if their velocity is sufficient. A completely different story is with antimatter particles such as positrons and anti-protons. When these hit regular matter, then both the particle and the surface of regular matter is converted into energy in the form of gamma radiation. This radiation however can ionize the nearby matter and also do serious damage to electronics, which is shielded from particles but not from gamma rays. High energy radiation is also created when regular charged particles such as protons and electrons interact with the matter as the excess energy is released as braking light (bremsstrahlung), when the high velocity of the particle suddenly changes to zero upon hitting the surface of a material. Anyhow, the spacecrafts are constantly being bombarded with different particles and this slowly degrades the surface of the material and the resulting radiation also has a devastating effect on the electronics. Learn more by watching our new science video:

How Does Atomic Oxygen Cause Corrosion in Space?

Atomic oxygen is one of the leading candidates which causes the degradation of materials in space. That’s because atomic oxygen is highly reactive and will oxidize anything that can be oxidized. This means that most vulnerable to this type of corrosion are polymers, carbon fiber materials and unprotected electronics. So in order to extend the lifespan of a spacecraft, one first needs to counter the corrosion caused by atomic oxygen. This can be done by using proper materials for making the spacecrafts components and by avoiding the exposure of sensitive electronics to space.

Science Video Series About Corrosion in Space

Captain Corrosion OÜ proudly presents a three part video series about corrosion in space. These science videos were made in collaboration with the department of materials science, University Tartu and were partially funded by the “Center of Excellence” (Project TK141). Corrosion in space is actually quite relevant right now as there are more spacecrafts in the orbit than ever before and their number keeps increasing. An average spy satellite, disguised as a weather satellite, costs about 400 million euros and their lifespan is somewhat limited due to various reasons like human errors, software/hardware failure and degradation of specific spacecraft parts due to the hostile environment of space (corrosion!). This “corrosion” of materials in space however can be quite complicated as there are multiple factors that contribute to the process. In our video series we discuss some of the most important factors. The general idea of this series is to provide additional information for companies that make spacecraft component so they can better plan their devices to last as long as possible in space.

Part 1 – How Does Atomic Oxygen Cause Corrosion in Space?

Part 2 – How do Charged Particles Cause Corrosion in Space?

Part 3 – How does Radiation Cause Corrosion in Space?